
IBM Systems & Technology Group

© 2010 IBM Corporation

Peter Relson
IBM Poughkeepsie
relson@us.ibm.com
4 August 2010

Health Checker
z/OS 1.12

and
Red Paper 4590

Session 7520

Permission is granted to SHARE Inc. to publish this
presentation paper in the SHARE Inc. proceedings;
IBM retains the right to distribute copies of this
presentation to whomever it chooses.

1

©2010 IBM Corporation
* 2

The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

The following are trademarks or registered trademar ks of other companies.

InfiniBand is a registered trademark of the InfiniBand Trade Association (IBTA).
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a trademark of Linux Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
All other products may be trademarks or registered trademarks of their respective companies.
The Open Group is a registered trademark of The Open Group in the US and other countries.

Notes:
Performance is in Internal Throughput Rate (ITR) ra tio based on measurements and projections using sta ndard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user' s job stream, the I/O configuration, the storage co nfiguration, and the workload processed.
Therefore, no assurance can be given that an indiv idual user will achieve throughput improvements equ ivalent to the performance ratios stated here.
IBM hardware products are manufactured from new par ts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this pr esentation are presented as illustrations of the m anner in which some customers have used IBM product s and the results they may have
achieved. Actual environmental costs and performan ce characteristics will vary depending on individua l customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or featur es discussed in this document in other countries, a nd the information may be subject to
change without notice. Consult your local IBM busi ness contact for information on the product or serv ices available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their publi shed announcements. IBM has not tested those produ cts and cannot confirm the
performance, compatibility, or any other claims rel ated to non-IBM products. Questions on the capabil ities of non-IBM products should be addressed to th e suppliers of those products.
Prices subject to change without notice. Contact y our IBM representative or Business Partner for the most current pricing in your geography.
This presentation and the claims outlined in it wer e reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for
compliance with local laws.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
DFSMSdss
DFSMShsm
DFSMSrmm
DS6000
DS8000*
FICON*

FlashCopy*
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
Infiniband*
Language Environment*

Parallel Sysplex*
ProductPac*
RACF*
Redbooks*
REXX
RMF
ServerPac*
SystemPac*

System Storage
System z
System z9
System z10
System z10 Business Class
Tivoli*
WebSphere*
z9*

Trademarks
z10
z10 BC
z10 EC
z/OS*
zSeries*

©2010 IBM Corporation
* 3

Abstract

The presentation will cover the new functions, facilities, and checks for
the IBM Health Checker for z/OS that will be available in z/OS 1.12. In
addition, to take advantage of the brand new Health Checker RedPaper
4590 which is a great addition to the IBM Health Checker for z/OS User's
Guide, the presentation will discuss various aspects of that RedPaper,
focusing on things that have not previously made their way into Share
presentations, such as persistent data. The presentation will also go into
some of the RedPaper's great examples of neat (and useful) things you
can do yourself to exploit the capabilities of the IBM infrastructure,
including use of Metal C and non-SYSREXX REXX, and message
management through MPF exits.

©2010 IBM Corporation
* 4

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 5

Agenda

� R12 check-writer support

�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 6

Metal C

� Metal C is supported as an additional check writing language
� We all know that C is familiar to new developers and

developers from many different platforms
� Metal C can be used to write local (authorized) and remote

(authorized or not authorized) checks
� It does not require any unique Health Checker syntax (as it

uses the Health Checker assembler macros). This is
contrasted with System REXX which, for example, has a
number of unique functions provided to help it work

©2010 IBM Corporation
* 7

Why Metal C?

� METAL C does not require a language environment (LE)
� METAL C allows you to embed assembler statements

and in particular assembler (macro) service invocat ions
� METAL C supports all the core functions of “regular” C

�Although standard library functions are not generally
supported, some can be replaced by corresponding
assembler services if needed

©2010 IBM Corporation
* 8

Metal C Support

� No callable services are provided, but rather z/OS provides
�mappings for structures and constants

� The coder is expected to use the mappings to set up the
data that is needed and use the Metal C support for
parameterized invocations of assembler macros to access
IBM Health Checker for z/OS functions

©2010 IBM Corporation
* 9

Metal C Header Files

� HZSHPQE: analog of assembler macro HZSPQE
� HZSHDPQE: analog of HZSDPQE
� HZSHMGB: analog of HZSMGB
� HZSHQUAA: analog of HZSQUAA
� HZSHCPAR: analog of HZSZCPAR
� HZSHENF: analog of HZSZENF
� HZSHHCKL: analog of HZSZHCKL
� HZSHCONS: analog of HZSZCONS
� Provided as C header files in SYS1.SIEAHDR.H

�For example, SYS1.SIEAHDR.H(HZSHPQE)

�Can be included in METAL C as “normal” include:
• #include <hzshpqe.h>

� Header HZSH can be used to include all of the above

©2010 IBM Corporation
* 10

Metal C samples

� Code samples are shipped in /usr/lpp/bcp/samples
�To let you quickly try out METAL C for health checks

�Have working examples of Health Checker service
invocations via the _asm syntax

� hzscadd.c – HZSADDCHECK exit routine, use of HZSADDCK
� hzscchkp.c – sample check routine, use of HZSFMSG,

HZSPREAD, HZSPWRIT
� hzscchkr.c – sample check routine, use of HZSFMSG
� hzscrchc.c – sample remote check routine, use of HZSCPARS
� hzscrchk.c – sample remote check routine
� hzssmake.mk is a “Makefile” to build the above using the Unix

utility “make”

©2010 IBM Corporation
* 11

Metal C examples (HZSADDCK)
� HZSADDCK (in HZSCADD)
� Struct with data
/* This structure is used to store parameter inform ation

for invoking HZSADDCK */
typedef struct checkInfo_s {

int entry; /* unique val for a check */
char name[32]; /* check name */
char date[8]; /* YYYYMMDD */
int reasonLen; /* 1 - 126 */
char *reason; /* Up to 126 char string */
int parmsLen; /* 1 - 256 */
char *parms; /* Up to 256 char string */

} checkInfo;

� Fill in the struct fields with appropriate data

©2010 IBM Corporation
* 12

Metal C examples (HZSADDCK) cont
� HZSADDCK (in HZSCADD)

__asm(" HZSADDCK ACTIVE,"
"SEVERITY=LOW,"

"INTERVAL=ONETIME,"
"USS=NO,"
"ENTRYCODE=0(%3)," /* Based on checkInfo struct */
"CHECKNAME=4(%3),"
"DATE=36(%3),"
"REASONLEN=44(%3),"
"REASON=(%4),"
"PARMS=(%5),"
"PARMSLEN=52(%3),"
"CHECKOWNER=ckOwner,"
“EXITRTN=exitRtn,"
"CHECKROUTINE=checkRtn,"
"MSGTBL=msgTbl,"
"RETCODE=(%0),"
"RSNCODE=(%1),"
"MF=(E,(%2),COMPLETE)"
: "=r"(rc), "=r"(rsn)
: “r”(&addCk), “r"(&checkInfo), "r"(checkInfo.reaso n),

"r"(checkInfo.parms));

©2010 IBM Corporation
* 13

Metal C __ASM Substitution Rules
� Between the first and second colons are “output” thing s

� “=r” means to select register n, substitute with “n” and store from
register n into the variable “after”

� “=m” means to select register n, substitute with “0(n)” and set the
variable's address into register n “before”

� After the second colon are “input” things

� “r” means to select register n, substitute with “n” and to load into
register n from the variable “before” or set the variable's address into
register n “before”

� “m” means to select register n, substitute with “0(n)” and to set the
variable's address into register n “before”

� The behavior above is what is important. Use what b ehaves the
way you need it to. But don't lie to the compiler

� See the Metal C book section 1.2.5 “Inserting HLASM instructions into
the generated source code”

©2010 IBM Corporation
* 14

Metal C examples (HZSADDCK) cont

� HZSADDCK (in HZSCRCHC)
__asm(" HZSADDCK "

“CHECKOWNER==CL16'IBMSAMPLE',"
"CHECKNAME==CL32'HZS_SAMPLE_REMOTE_MC_HZSCPARS',"
"ACTIVE,"
"SEVERITY=LOW,"
"REMOTE=YES,"
"USS=NO,"
"HANDLE=%4,"
"PETOKEN=%3,"
"INTERVAL=ONETIME,"
"VERBOSE=NO,"
"DATE==CL8'20090212',"
"REASON==CL41'Sample Metal C health check with HZSC PARS',"
"REASONLEN==A(41),"
"PARMS==CL38'PARM1(1,999),PARM2(100),PARM3(CHOICE1) ',"
"PARMSLEN==A(38),"
"RETCODE=%2,"
"RSNCODE=%1,"
"MF=(E,(%0),COMPLETE)"

: : "r"(&PListAddCk), "m"(rsncode), "m"(retcode),
“m”(PEToken), "m"(checkHandle));

©2010 IBM Corporation
* 15

Metal C examples (HZSFMSG)

� HZSFMSG
__asm(" HZSFMSG REQUEST=CHECKMSG,“

"MGB=(%3),“
"RETCODE=(%0),“
"RSNCODE=(%1),“
"MF=(E,(%2))“
: "=r"(hzsfmsg_rc)
, "=r"(hzsfmsg_rsn)
: “r”(&fMsgParmLst)
, "r"(&MGB));

©2010 IBM Corporation
* 16

Metal C examples (HZSPREAD)

� HZSPREAD (in HZSCCHKP)
__asm(" HZSPREAD CHECKOWNER=ckOwner,"

"CHECKNAME=ckName,"
"IPL=PRIOR,"
"INSTANCE=MOSTRECENT,"
"STARTBYTE=0,"
"BUFFER=%0,"
"DATALEN=%4,"
"BYTESAVAIL=%1,"
"RETCODE=(%2),"
"RSNCODE=(%3),"
MF=(E,(%5),COMPLETE)"
: "=m"(PReadBuffer)
, "=m"(PReadBytes)
, "=r"(hzspread_rc)
, "=r"(hzspread_rsn)
: "m"(persistentDataBytes)
, “r”(&lRead));

©2010 IBM Corporation
* 17

Metal C examples (HZSPWRIT)

� HZSPWRIT (in HZSCCHKP)
__asm(" HZSPWRIT BUFFER=&2,“

"DATALEN=%4,“
"RETCODE=%0,“
"RSNCODE=%1,“
"MF=(E,(%3),COMPLETE)“
: "=m"(hzspwrit_rc)
, "=m"(hzspwrit_rsn)
: “m”(PWriteBuffer)
, "r"(&lWrit)
, "m"(persistentDataBytes));

©2010 IBM Corporation
* 18

Agenda

� R12 check-writer support
�Metal C

�No Message Table
� R12 installation support

�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 19

Message Table

� Ever since the Health Checker framework was introduced, a
health check has consisted of two main parts:

• the check routine (code) and
• the message table (msg data)

� The process of defining the content of the message table
and creating the message table can be unwieldy and feels
unnecessary for REXX check writers since REXX has such
good string-manipulation functions.

©2010 IBM Corporation
* 20

Why even have a Message Table?

� Makes it easier to provide message translations for different
languages

� The “rigid” structure of the message table input allows for
�Consistent appearance of check messages across health

checks
�Enforcement of completeness of check message contents
�Programmatic approach to generation of message

documentation
� IBM supplied health checks will continue to use message

tables.
� Nevertheless

©2010 IBM Corporation
* 21

No Message Table for REXX checks

� REXX users wanted to be able to create their message text
using standard REXX functions. They could do so but would
still need to create an artificial message table simply to hold
the (complete) text that they set up

� In z/OS V1R12 any check message text may be provided
directly by the check routine, therefore removing the
requirement to provide a separate message table.

©2010 IBM Corporation
* 22

No Message Table: Adding a check

� The ADD | ADDREPLACE HZSPRMxx parmlib statement still requires a
message table parameter, but a special value *NONE can now be
specified.

� For example:

ADDREP CHECK(IBMHZS,HZS_DIRECTMSG_REXX)
EXEC(UTH1472R)
REXXHLQ(UTHUSER)
REXXTSO(NO)
REXXIN(NO)
MSGTBL(*NONE)
USS(NO)
SEVERITY(HIGH)
INTERVAL(ONETIME)
ACTIVE
DATE(20091003)
REASON('DIRECTMSG REXX SAMPLE')

©2010 IBM Corporation
* 23

No Message Table: REXX check syntax

� Main target are REXX checks due to REXX's powerful string
manipulation capabilities

� The existing REXX function HZSLFMSG now supports
�a new HZSLFMSG_REQUEST type of “DIRECTMSG”
�with new HZSLFMSG_REASONs “CHECKEXCEPTION”,

“CHECKINFO”, and “CHECKREPORT”
� For example:

HZSLFMSG_REQUEST = “ DIRECTMSG”
HZSLFMSG_REASON = “ CHECKINFO”
HZSLFMSG_DIRECTMSG_ID = “CNZH0001I”
HZSLFMSG_DIRECTMSG_TEXT = “Sample msg…”
CALL HZSLFMSG()

©2010 IBM Corporation
* 24

No Message Table: Assembler checks

� Besides REXX function HZSLFMSG, the assembler macro
HZSFMSG now also allows for REQUEST=DIRECTMSG…

� Small difference: Text parameters need a corresponding text
length parameter

� For example:

HZSFMSG REQUEST=DIRECTMSG,
REASON=CHECKREPORT,
TEXT=reportline,
TEXTLEN==AL2(L' reportline),
MF=(E,HZSFMSG_List)

� We suggest that a real message table is the better way to go for non-
REXX checks

©2010 IBM Corporation
* 25

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support

�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 26

SuperUser

� In order to successfully run health checks which use z/OS
Unix, Health Checker requires a user profile with

• OMVS segment and
• z/OS Unix super user authority

�Previously, super user authority was required to be given
via a user profile with uid(0)

�Uid(0) user profiles are closely watched by auditors and
might require extra explaining and might even prevent
users from exploiting Health Checker

©2010 IBM Corporation
* 27

SuperUser (cont)

� In z/OS V1R12 you can associate the Health Checker
address space with a user profile which has
�READ access to the BPX.SUPERUSER resource in the

FACILITY class, and
�A non-zero uid

� Result
�The Health Checker associated user profile does not

appear on any uid(0) audit reports anymore.
�BUT note that the underlying authorization

requirement still exists and is persistent for the life of
hzsproc.

©2010 IBM Corporation
* 28

SuperUser (cont)

� The IBM Health Checker for z/OS User’s Guide has details
and example statements for both associating the Health
Checker address space
�With a uid(0) user profile

• ADDUSER hcsuperid OMVS(UID(0)…
• RDEFINE STARTED HZSPROC.*

STDATA(USER(hcsuperid)…
�or
�With a BPX.SUPERUSER user profile

• ADDUSER hcsuperid OMVS(UID(non-zero)…
• PERMIT BPX.SUPERUSER CLASS(FACILITY)

ID(hcsuperid) ACCESS(READ)
• RDEFINE STARTED HZSPROC.*

STDATA(USER(hcsuperid)…

©2010 IBM Corporation
* 29

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser

�SDSF Health Check History
� Pre-R12 check-writer support

�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 30

SDSF Health Check History

� The IBM Health Checker provides an option for saving Health Checks to
a logstream for historical purposes.

� SDSF can now let the user view either the current status of health
checks via the SDSF Health Checker display or the history from the
logstream.

©2010 IBM Corporation
* 31

SDSF Health Check History (cont)

You can:
�View the frequency and results of previous health check

runs
�Compare historical results of health checks to evaluate

the results of updating component parameters
�Browse, save or print specific health check runs

©2010 IBM Corporation
* 32

SDSF Health Check History (cont)

� In support of the new SDSF Health Checker History display there is a
new column on the SDSF Health Checker display titled LogStream.
This column shows the current logstream to which the IBM Health
Checker for z/OS is connected, from which history data will be
gathered.

©2010 IBM Corporation
* 33

SDSF Health Check History (cont)

The support is invoked by:
� The new L (ListHistory) action on the SDSF Health Checker

display
� This action is valid for checks that have had their output

written to the logstream

©2010 IBM Corporation
* 34

SDSF Health Check History (cont)

The L action presents the user with the SDSF Health
Checker History display:

©2010 IBM Corporation
* 35

SDSF Health Check History (cont)

� From the Health Checker History display the user can:
�Browse a specific run of a check
�Print a specific run of a check

� The information provided is for each run of a check and
includes:
�Check owner
�Status
�Result
�Diagnostic data
�Start and stop time
�System and sysplex name
�Check name which is also seen on the panel title line

©2010 IBM Corporation
* 36

SDSF Health Check History (cont)

� By default, SDSF will collect the last 10 iterations of a check.
The user can override this default using the new SET CKLIM
command. The minimum number of checks can be 1 and
the maximum is 999,999.

� You can also override the SDSF default of 10 iterations
using the new Panel.CK.DefaultCKLim custom property.
Again, the user can override this default via the SET CKLIM
command

©2010 IBM Corporation
* 37

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support

�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 38

Persistent Data

� Services available to checks to save and retrieve data
between IPLs

� Persistent data is saved in HZSPDATA DD (data set).
�HZSPDATA may have to be resized as persistent data

users increase over time.
� HZSPWRIT - Write service for persistent data.
� HZSPREAD - Read service for persistent data.

©2010 IBM Corporation
* 39

HZSPDATA data set

� The data set captures
�Data from the first request (by each exploiting check) for

this IPL
�Data from the most recent request (by each exploiting

check) for this IPL
� The data set saves

�Data from the previous IPL by each exploiting check (first
and most recent requests)

� The system writes the persistent data to the data set
periodically, but not until one hour has elapsed since
hzsproc has been started (if you had made some mistake,
you have that hour to terminate hzsproc without having
changed the data set). Once hzsproc has been up at least
an hour, the latest data will be written to the data set if
hzsproc is stopped.

©2010 IBM Corporation
* 40

HZSPDATA data set (cont)

� Specified in hzsproc via HZSPDATA DD
� Fixed block, record length 4096 data set
� If there is a problem, the system indicates how big it needs

to be and will prompt for a new (empty) data set
�Messages HZS0012E, HZS0013A

� Do not edit the data set
� At HC startup, the data set is read, and all its data is

buffered in storage (data for the current IPL is initially
empty, data for the previous IPL is buffered). Suppose the
data set had had data from IPL's 1 and 2 and now this is IPL
3. The data from IPL 1 will be discarded. The data from IPL
2 becomes “previous IPL's data” and the forthcoming data
from IPL 3 is the current IPL's data

©2010 IBM Corporation
* 41

Write to HZSPDATA

� HZSPWRIT service
�Used by a check routine
�The check routine may write one time or multiple times.

All the data written in one check iteration is concatenated
together and maintained in virtual storage. Thus it makes
no difference to the system if the check routine uses
HZSPWRIT once to write all the data or multiple times to
write each piece.

©2010 IBM Corporation
* 42

Write to HZSPDATA

� HZSPWRIT service (cont)
�The check routine identifies

• Its handle (if a remote check). It is assumed to be the
currently running check if a local check.

• The data to write and how much data
�The system buffers the data in virtual storage
�Upon completion of the check iteration, the data is

available to be read
�The data is written to the data set periodically
�There is no way or need to ask that the data be written

“now” to the data set

©2010 IBM Corporation
* 43

Write to HZSPDATA (example)

� HZSPWRIT service (cont)
�HZSPWRIT BUFFER=buffer,

DATALEN=datalen,
RETCODE=rc,RSNCODE=rsn,
MF=(E,hzspwrit_listform)

�Buffer is the buffer from which data is to be written
�The amount of data to be written.

©2010 IBM Corporation
* 44

Read from HZSPDATA

� HZSPREAD service
�Used by a check routine (usually the check routine that

wrote the data)
�The check routine that wrote the data is responsible for

its format. The system has no idea. If the check routine
has not externalized that format, you should not make
any assumptions about that format.

�Security checking is done (always if unauthorized caller,
on request if authorized) against XFACILIT class entity

• HZS.sysname.checkowner.PDATA
• HZS.sysname.checkowner.checkname.PDATA

©2010 IBM Corporation
* 45

Read from HZSPDATA

� HZSPREAD service (cont)
�The issuer identifies

• The requested check owner/name (HZSPREAD need
not be issued from the check that wrote the data,
although that is the typical usage)

• Its handle (if a remote check). It is assumed to be the
currently running check if a local check.

• A target buffer into which to write the data
• The “start byte” of data to be read (for example, it

might read the first 4096 bytes, and then ask to start
the next time with the 4097th byte (a value of 4096).

�The data returned is from the virtual storage buffer. The
data set is not accessed

©2010 IBM Corporation
* 46

Read from HZSPDATA

� HZSPREAD service (cont)
�The issuer identifies

• Which copy of the data to be read
– Prior IPL's data, first iteration
– Prior IPL's data, most recent (last) iteration
– This IPL's data, first iteration
– This IPL's data, most recent

• What security checking to do

©2010 IBM Corporation
* 47

Read from HZSPDATA (example)

� HZSPREAD service (cont)
�HZSPREAD CHECKOWNER=owner,

CHECKNAME=name
IPL=CURRENT,
INSTANCE=MOSTRECENT,
BUFFER=ibuffer,DATALEN=datalen,
STARTBYTE={startbyte | FIRST_BYTE},
BYTESAVAIL=bytesavail,
RETCODE=rc,RSNCODE=rsn,
MF=(E,hzspread_listform)

©2010 IBM Corporation
* 48

Read from HZSPDATA (example)

� HZSPEAD service (cont)
�Buffer is the buffer into which the data is to be read
�Datalen is the number of bytes to be read
�Startbyte identifies the starting byte to be read (on first

call, usually 0)
�Bytesavail is output by the system indicating how many

bytes were available to be read. This can be used to
gauge how big a buffer to allocate for a subsequent call

©2010 IBM Corporation
* 49

HZSPDATA protocol

� A typical protocol for a check iteration might be
�HZSPREAD to request the most recently written data for

this IPL (i.e., “what did I write the last time?”)
�If that does not exist (then I have never run for this IPL)

request the most recent data from the previous IPL
�For both, start reading at byte 0. Provide a buffer big

enough to hold the data, possibly re-allocated after
learning how big an area is needed

�If no copy is found then I must assume I have no prior
data to worry about

�Manipulate the data, create new data, whatever
�HZSPWRIT (one or more invocations as convenient) to

write the data

©2010 IBM Corporation
* 50

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data

�IOSSPOF service
� Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 51

IOSSPOF service

� Service to detect single point of failure
� Available as of z/OS R10
� Used by many checks (and can be used by you)
� But most important is its example of showing how you can

provide a service that writes to the caller's check's message
buffer on behalf of that check

©2010 IBM Corporation
* 52

IOSSPOF service (cont)

� HealthChecker-wise, IOSSPOF takes as input
�Does the caller want HC messages produced or not

(HCMSG=NO | YES)
�When “YES”, is the caller a remote check (as opposed to

a local check) and if remote what is the check's handle
(HANDLE=xhandle)

�These enable the service to know what parameters to
specify when it invokes HZSFMSG to write a HC
message.

• When HANDLE is not provided, uses REMOTE=NO
• When HANDLE is provided, uses REMOTE=YES,

HANDLE=xhandle

©2010 IBM Corporation
* 53

IOSSPOF (cont)

� Created its own message table using normal HC
functionality, but this message table is not managed in any
way by HC (in this case, it happens to be packaged with the
IOSSPOF service load module)

� On its HZSFMSG invocation, the IOSSPOF service specifies
MSGTABLE=iosspof_msgtable
along with REMOTE=YES,HANDLE=xhandle or
REMOTE=NO according to the IOSSPOF user's parameters

©2010 IBM Corporation
* 54

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

�Other RedPaper goodies
� R12 new checks
� Summary

©2010 IBM Corporation
* 55

Other RedPaper goodies

� Use of MPF to run a check when a particular message is
issued

� Use of MPF to get notification upon important messages
� Use of non-SYSREXX REXX for check development

©2010 IBM Corporation
* 56

Message-driven check running

� Create your check routine (perhaps via SYSREXX)
� Add your check via HZSPRMxx ADDREP statement

identifying the check routine and (if it exists) message table
� Create an MPF exit “your_exit”
� Define in MPFLSTxx the message you want to watch for and

the exit to get control when that happens (“your exit”)
ABCnnnI,SUP(NO),USEREXIT(your_exit)

� In your exit, issue HZSCHECK REQUEST=RUN for the
particular check that you want to run

©2010 IBM Corporation
* 57

Important Messages Check(s)

� The situation: A lot of customers like the exception notification
capabilities of HC. They want things not even necessarily reported by
HC to be surface-able by this mechanism. How about system
messages?

� Suppose you have a list of messages for which you would like to get HC-
based notification and then be able to browse the message buffer for a
check to look at the data

� This is a an example covered in the Red Paper so for the full details,
consult that document

� IBM has been asked to create something like this.
� In the mean time, this could get you started

©2010 IBM Corporation
* 58

Important Messages Check(s) (Cont)

� Here are the main pieces involved

� Identify to the system which messages you want tracked

� Add a check for each message (yes, one check per message)

� Create an MPF exit to capture the message text when the message
is issued,

� Create a check routine to write the saved message text to the check's
message buffer (coupled with a message table)

©2010 IBM Corporation
* 59

Important Messages Check(s): Identify

� MPF processing is the key. For each message of interest, set up an
entry in MPFLSTxx that ties the message to an exit routine that you will
provide

� Within MPFLSTxx, for example,

� IEE611I,SUP(NO),AUTO(Y),USEREXIT(yourexit)

� “Yourexit” will be given control when IEE611I is issued

� You will also need to have your CONSOLxx parmlib member point to
your MPFLSTxx via the MPF keyword (initially you may activate via the
SET MPF command)

©2010 IBM Corporation
* 60

Important Messages Check(s): Add Check

� Within HZSPRMxx, activated usually by
F hzsproc,ADD PARMLIB=xx. Statements such as

� ADDREP CHECK(owner,MESSAGE_ABCnnnI)
MSGTBL(the_message_table)
PARM(ALL)
VERBOSE(NO)
SEVERITY(MEDIUM)
INTERVAL(hh:mm)
DATE(20100804)
REASON('alert for message ABCnnnI')

� One such statement for every message being tracked

©2010 IBM Corporation
* 61

Important Messages Check(s): MPF exit

� Routine #C1HZS00 within the RedPaper chapter 9 package
� This routine allocates ECSA in which to hold the messages

as they are issued, with one 64K area per message. It could
use >2G common storage instead.

� A system-level name/token is used to locate the data for
sharing between this routine and the check routine

� After setting up the data, the MPF exit can request that the
check be run via the HZSCHECK macro, so that the
notification will result.

©2010 IBM Corporation
* 62

Important Messages Check(s): Check Routine

� Routine #C3HZSCK within the RedPaper chapter 9 package
� This routine retrieves the information saved by the MPF exit

and writes it to the check's message buffer
� It implements a protocol whereby to “start over” for a given

message, you must refresh the check. That is not an ideal
protocol, but it does work.

©2010 IBM Corporation
* 63

Checks in non -SYSREXX REXX

� When developing checks that will ultimately be SYSREXX, it
can be nice to be in a non-authorized environment

� REXX is just another programming language.
� You need eventual access to the assembler services that

underly the functions with which any remote check must
interact

� The same can be said for non-Metal C
� The goal is to be able to have your REXX exec, once

debugged, moved with minimal changes to a SYSREXX
library

©2010 IBM Corporation
* 64

Checks in non -SYSREXX REXX (cont)

� SYSREXX checks get input in REXX variables and
communicate with HC services (such as the HZSCHECK
macro through HZSLSTRT / HZSLSTOP and the HZSFMSG
macro through HZSLFMSG) via REXX variables

� You need to provide a front-end that sets up the REXX
variables that the check exec will receive

� You need to provide stubs that the check exec can invoke
that accomplish what will happen when the SYSREXX exec
invokes HZSLxxxx.

©2010 IBM Corporation
* 65

Checks in non -SYSREXX REXX (cont)

� Stubs provided with RedPaper chapter 8 package
�XZSLADCK – check initialization (load message table,

allocate pause element, add the check)
�XZSLSTRT – HZSCHECK REQUEST=OPSTART
�XZSLSTOP – HZSCHECK REQUEST=OPSTOP
�XZSLFMSG – HZSFMSG
�XZSLCLNP - release the pause element, delete the

message table

©2010 IBM Corporation
* 66

Agenda

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies

�R12 new checks
� Summary

©2010 IBM Corporation
* 67

New checks in R12

� Communications Server
�(IBMCS,CSTCP_IPMAXRT4_tcpipstackname)
�(IBMCS,CSTCP_IPMAXRT6_tcpipstackname)

� DFSMS SMS
�(IBMSMS,SMS_CDS_SEPARATE_VOLUMES)
�(IBMSMS,SMS_CDS_REUSE_OPTION)

� DFS SMB
�(IBMSMB,SMB_NO_ZFS_SYSPLEX_AWARE)
�(IBMSMB,ZOSMIGREC_SMB_RPC)

©2010 IBM Corporation
* 68

New checks in R12 (cont)

� XCF/XES
�(IBMXCF,XCF_SFM_CFSTRHANGTIME)
�(IBMXCF,XCF_CF_Processors)
�(IBMXCF,XCF_CF_Memory_Utilization)
�(IBMXCF,XCF_CDS_MAXSYSTEM)
�(IBMXCF,XCF_CFRM_MSGBASED)
�(IBMXCF,XCF_CF_STR_POLICYSIZE)

� IOS
�(IBMIOS,IOS_CAPTUCB_PROTECT)
�(IBMIOS,IOS_STORAGE_IOSBLKS)
�(IBMIOS,IOS_MIDAW)

©2010 IBM Corporation
* 69

New checks in R12 (cont)

� z/OS UNIX
�(IBMUSS,USS_HFS_DETECTED)

� Infoprint
�(IBMINFOPRINT,INFOPRINT_INVENTORY_CHECK)
�(IBMINFOPRINT,ZOSMIGV1R12_INFOPRINT_INVSIZE)

� Supervisor
�(IBMSUP,SUP_LCCA_ABOVE_16M)

� Reconfiguration
�(IBMRCF,RCF_PCCA_ABOVE_16M)

©2010 IBM Corporation
* 70

Check Details – Communications Server

(IBMCS,CSTCP_IPMAXRT{4|6}_tcpipstackname)
� Checks whether the total number of IPv{4|6} indirect static

and dynamic routes in the TCP/IP stack's routing table
exceeds a maximum threshold. The tcpipstackname suffix is
the job name of the TCP/IP stack to which this check
applies.

� A high number of routes added by OMPROUTE and the
TCP/IP stack can potentially result in high CPU consumption
from routing changes. A large routing table is considered to
be inefficient.

� Parameter ‘IPMAXRT{4|6}(n)’ specifies an integer value
indicating the maximum threshold value for the number of
IPv{4|6} indirect static and dynamic routes that the TCP/IP
stack can add to its routing table before issuing a warning.
Default is n=2000

� Interval WEEKLY, Severity LOW

©2010 IBM Corporation
* 71

Check Details – DFSMS SMS

(IBMSMS,SMS_CDS_SEPARATE_VOLUMES)
� Verifies that the active control data set (ACDS) and

communications data set (COMMDS) are not residing on
same volume.

� To ease recovery in case of failure. Also, you should allocate
a spare ACDS on a different volume. The control data set
(ACDS or COMMDS) must reside on a volume that is not
reserved by other systems for a long period of time because
the control data set (ACDS or COMMDS) must be available
for SMS processing to continue.

� No parameters
� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 72

Check Details – DFSMS SMS

(IBMSMS,SMS_CDS_REUSE_OPTION)
� Verifies that the active control data set (ACDS) and

communications data set (COMMDS) are defined with the
REUSE option.

� Helps to avoid running into space problems (SMS reason
code 6068) as result of subsequent ACDS or COMMDS
updates, or IMPORT/EXPORT functions.

� No parameters
� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 73

Check Details – DFSMS SMB

(IBMSMB,SMB_NO_ZFS_SYSPLEX_AWARE)
� Determines if the DFS/SMB File Server is running in a

sysplex and if so, determines if any member of the sysplex is
running zFS sysplex aware

� In a sysplex environment, exportation of a zFS file system
and subsequent sharing by the DFS/SMB server can only
take place on the system that owns the file system and is not
running zFS sysplex aware. Beginning with z/OS V1R11, the
SMB server cannot export zFS read/write file systems when
zFS is running sysplex-aware on either:
�The same system where the SMB server is running
�The system that owns the zFS file system

� No parameters
� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 74

Check Details – Cross system coupling facility

(IBMXCF,XCF_SFM_CFSTRHANGTIME)
� Monitors the CFSTRHANGTIME value in the Sysplex failure

management (SFM) policy to make sure it is specified and it
matches the check parameter CFSTRHANGTIME value.
CFSTRHANGTIME specifies the amount of time before the
system takes automatic action to relieve hangs caused when
a connector fails to respond to structure-related events in a
timely manner.

� Installation should specify SFM policy parameter
CFSTRHANGTIME so that such hangs can be relieved
automatically.

� Parameter 'CFSTRHANGTIME(NO | seconds)‘ (default is
seconds=300) specifies the wait time interval, in seconds, or
NO, if no automatic relieve is requested

� Interval 4:00, Severity MEDIUM

©2010 IBM Corporation
* 75

Check Details – Cross system coupling facility

(IBMXCF,XCF_CF_Processors)
� Provides a warning when a coupling facility processor

configuration is not consistent with IBM recommendations
and may result in degraded response time and throughput.
Based on the coupling facility architected function level
(CFLEVEL).

� Parameter ‘EXCLUDE(CFname, CFName,…)’ allows to
specify a list of CFNames that the check should not consider
in its verification processing. Processor configurations for
excluded CFs will still be reported on, just not factored into
the overall check status. Default is ‘EXCLUDE()’ (no
exclusions).

� Interval 4:00, Severity MEDIUM

©2010 IBM Corporation
* 76

Check Details – Cross system coupling facility

(IBMXCF,XCF_CF_Memory_Utilization)
� Raises an exception when a coupling facility reaches a given

memory utilization percentage threshold.
� Prevents a CF from becoming over-full and thereby allows

the CF to allocate new structures, expand structures, sustain
a viable failover environment and participate in structure
rebuild and reallocation processing when needed.

� Parameter ‘MAXUTILIZATION(n[%])’ indicates the threshold
percentage that the Coupling Facility memory utilization
should not exceed. Default is 60%.(

� Interval 1:00, Severity MEDIUM

©2010 IBM Corporation
* 77

Check Details – Cross system coupling facility

(IBMXCF,XCF_CDS_MAXSYSTEM)
� Warns when a function CDS (any CDS other than the

Sysplex CDS) is formatted with a MAXSYSTEM value that is
less than the MAXSYSTEM value associated with the
primary Sysplex CDS.

� If a function CDS has a smaller MAXSYSTEM value, then a
system joining the Sysplex with a higher slot number will not
be able to use the function provided by that function CDS.

� No parameters
� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 78

Check Details – Cross system coupling facility

(IBMXCF,XCF_CFRM_MSGBASED)
� Checks to see if CFRM is enabled to use a given event

processing protocol when a structure is defined in the CFRM
active policy in a multisystem-capable sysplex.

� CFRM message-based event management can improve
performance, availability, and scalability for users of CF
structures.

� Parameter ‘{MSGBASED|POLBASED}’ specifies that the
check should issue an exception if the sysplex is not using
{message-based | policy-based} CFRM processing. Default
is MSGBASED.

� Interval 4:00, Severity MEDIUM

©2010 IBM Corporation
* 79

Check Details – Cross system coupling facility

(IBMXCF,XCF_CF_STR_POLICYSIZE)
� Check that structures in the CFRM active policy do not differ

too much for values INITSIZE and SIZE. INITSIZE should
indicate an initial structure size of at least half the maximum
structure size (SIZE). INITSIZE should not be less than the
maximum structure size when altering of the structure size is
not supported.

� Specifying different INITSIZE and SIZE values provides
flexibility to dynamically expand the size of a structure for
workload changes, but too large a difference between
INITSIZE and SIZE may waste coupling facility space or
prevent structure allocation.

� No parameters
� Interval 4:00, Severity MEDIUM

©2010 IBM Corporation
* 80

Check details – Input/Output Supervisor

(IBMIOS,IOS_CAPTUCB_PROTECT)
� Verifies that captured UCB (Unit Control Block) protection is

active on the system.
� UCBs are control blocks in storage that define the

characteristics of devices. Legacy software may require a
subset of these to reside in the first 16 megabytes of
storage. There is a service to capture the UCB and
temporarily put it in this 24-bit addressable area. Captured
UCB Protection places the UCBs in write protected storage,
which is recommended by IBM.

� Parameter ‘PROTECT({YES|NO})’ indicates the expected
state of captured UCB protection. Default is YES – the
captured UCB protection state should be enabled.

� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 81

Check details – Input/Output Supervisor

(IBMIOS,IOS_STORAGE_IOSBLKS)
� Verifies that control blocks used in IOS can reside in 31-bit

addressable storage.
� Control blocks used to initiate I/O were obtained in storage

addressable in the first 16 megabytes of storage so that 24-
bit AMODE legacy software could perform scans on them.
However, forcing all I/O control blocks below the 16
megabyte line creates a constraint on the amount of storage
below the line. IBM recommends that the control blocks be
allowed to be in 31-bit addressable storage.

� Parameter ‘IOSBLKS({24|31})‘, indicates the expected
actual state of 31-bit-allowed IOS blocks. Default is 31.

� Interval ONETIME, Severity LOW

©2010 IBM Corporation
* 82

Check details – Input/Output Supervisor

(IBMIOS,IOS_MIDAW)
� Verifies that the modified indirect addressing word (MIDAW)

facility is enabled.
� MIDAWs are a more efficient way to issue I/O commands

and allow better use of I/O bandwidth.
� Parameter ‘MIDAW({YES|NO})’ indicates the expected state

of MIDAW. Default is YES – MIDAW should be enabled.
� Interval ONETIME, Severity LOW

©2010 IBM Corporation
* 83

Check details – z/OS Unix System Services

(IBMUSS,USS_HFS_DETECTED)
� Issues an exception if any mounted HFS file systems are

found and owned by the system running the health check.
� HFS file systems are no longer the strategic file system. All

HFS file systems should be migrated to zFS.
� Parameter ‘RUN_ON_MOUNT={YES|NO}’ indicates whether

or not the check should run after the successful mount of an
HFS file system. RUN_ON_MOUNT=YES is the default.

� Parameter ‘HFS_LIST=(FSname, FSName,…)’ indicates a
list of HFS file systems (-data sets) that you wish this check
to ignore.

� Interval 24:00, Severity LOW

©2010 IBM Corporation
* 84

Check details – Infoprint Server

(IBMINFOPRINT,INFOPRINT_INVENTORY_CHECK)
� Warn if .v2db inventory files are found on pre-V1R12

release. Earlier releases of Infoprint Server are not aware of
these V1R12 files and will ignore them and will not merge
changes to the existing .db inventory files into the existing
.v2db files.

� No parameters
� Interval ONETIME, Severity LOW

©2010 IBM Corporation
* 85

Check details – Infoprint Server

(IBMINFOPRINT, ZOSMIGV1R12_INFOPRINT_INVSIZE)
� Verify that there is enough space to create the new (.v2db)

inventory files from the old (.db) files when migrating to
V1R12.

� No parameters
� Interval ONETIME, Severity MEDIUM

©2010 IBM Corporation
* 86

Check details – BCP Supervisor

(IBMSUP,SUP_LCCA_ABOVE_16M)
� Verifies that the residency for the LCCA control block (macro

IHALCCA) is defined to a given RMODE
� In z/OS V1R12 the default residency for the LCCA changes

to RMODE 31 (above 16M) to leave more storage available
below 16M. Users might have explicitly asked in the past for
RMODE 24 (below 16M) via DIAGxx statement CBLOC
VIRTUAL24(IHALCCA)

� Parameter ‘CBLOC({24|31})') indicates what to expect for
the LCCA RMODE. Default is 31 for RMODE 31.

� Interval ONETIME, Severity LOW
� Also, by APAR OA32015 for R10,R11:

(IBMSUP,ZOSMIGV1R12_SUP_LCCA_ABOVE_16M)

©2010 IBM Corporation
* 87

Check details – Reconfiguration

(IBMRCF,RCF_LCCA_ABOVE_16M)
� Verifies that the residency for the PCCA control block

(macro IHAPCCA) is defined to a given RMODE
� In z/OS V1R12 the default residency for the PCCA changes

to RMODE 31 (above 16M) to leave more storage available
below 16M. Users might have explicitly asked in the past for
RMODE 24 (below 16M) via DIAGxx statement CBLOC
VIRTUAL24(IHAPCCA)

� Parameter ‘CBLOC({24|31})') indicates what to expect for
the PCCA RMODE. Default is 31 for RMODE 31.

� Interval ONETIME, Severity LOW
� Also, by APAR OA32015 for R10,R11:

(IBMRCF,ZOSMIGV1R12_RCF_LCCA_ABOVE_16M)

©2010 IBM Corporation
* 88

Summary

� R12 check-writer support
�Metal C
�No Message Table

� R12 installation support
�SuperUser
�SDSF Health Check History

� Pre-R12 check-writer support
�Persistent Data
� IOSSPOF service

� Other RedPaper goodies
� R12 new checks

©2010 IBM Corporation
* 89

Publications

� IBM Health Checker for z/OS User's Guide (SA22-7994)
�Includes an inventory of all health checks known at

publication time
�For an updated list check URL

http://www-
03.ibm.com/systems/z/os/zos/hchecker/check_table.html

� “Exploiting the Health Checker for z/OS infrastructure”
�RedPaper 4590

http://www.redbooks.ibm.com/abstracts/redp4590.html?O
pen

� Metal C Programming Guide and Reference (SA23-2225)
�http://publibz.boulder.ibm.com/cgi-

bin/bookmgr_OS390/Shelves/EZ2ZBK0H?filter=metal&S
UBMIT=Find

